FIITJEE INTERNAL Phase Test

PHYSICS, CHEMISTRY & MATHEMATICS

QP CODE: 100982

Time Allotted: 3 Hours

Maximum Marks: 180

- Please read the instructions carefully. You are allotted 5 minutes specifically for this purpose.
- You are not allowed to leave the Examination Hall before the end of the test.

INSTRUCTIONS

Caution: Question Paper CODE as given above MUST be correctly marked in the answer OMR sheet before attempting the paper. Wrong CODE or no CODE will give wrong results.

A. General Instructions

- 1. Attempt ALL the questions. Answers have to be marked on the OMR sheets.
- 2. This question paper contains Three Sections.
- 3. Section-I is Physics, Section-II is Chemistry and Section-III is Mathematics.
- 4. All the section can be filled in PART-A & B of OMR.
- 5. Rough spaces are provided for rough work inside the question paper. No additional sheets will be provided for rough work.
- 6. Blank Papers, clip boards, log tables, slide rule, calculator, cellular phones, pagers and electronic devices, in any form, are not allowed.

B. Filling of OMR Sheet

- 1. Ensure matching of OMR sheet with the Question paper before you start marking your answers on OMR sheet.
- 2. On the OMR sheet, darken the appropriate bubble with *Blue/Black Ball Point Pen* for each character of your Enrolment No. and write in ink your Name, Test Centre and other details at the designated places.
- 3. OMR sheet contains alphabets, numerals & special characters for marking answers.

C. Marking Scheme For All Two Parts.

(i) PART-A (01-03) contains (3) <u>Multiple Choice Questions</u> which have <u>One or More Than One Correct</u> answer.

Full Marks: +4 If only the bubble(s) corresponding to all the correct options(s) is (are) darkened. *Partial Marks*: +1 For darkening a bubble corresponding to each correct option, provided NO incorrect option is darkened.

Zero Marks: 0 If none of the bubbles is darkened.

Negative Marks: -1 In all other cases.

For example, if (A), (C) and (D) are all the correct options for a question, darkening all these three will result in +4 marks; darkening only (A) and (D) will result in +2 marks; and darkening (A) and (B) will result in -1 marks, as a wrong option is also darkened.

- (ii) **Part-A (04-07)** Contains Four (04) multiple choice questions which have ONLY ONE CORRECT answer Each question carries +3 marks for correct answer and -1 marks for wrong answer.
- (iii) Part-A (08-11) This section contains Four (04) Matching List Sets. Each set has ONE Multiple Choice Question. Each set has TWO lists: List-I and List-II. List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5). FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question. Each question carries +3 Marks for correct answer and -1 marks for wrong answer.
- (iii) Part-B (01-06) This section contains SIX (06) questions. The answer to each question is a NON-NEGATIVE INTEGER. For each question, enter the correct integer corresponding to the answer. Each question carries +4 marks for correct answer. There is no negative marking.

Name of the Candidate:	
Batch:	Date of Examination:
Enrolment Number:	

(Single Correct Answer Type)

This section contains **4 multiple choice questions**. Each question has four choices (A), (B), (C) and (D) out of which **ONLY ONE is correct**.

4. Two bodies of masses *m* and 4 *m* are attached with string as shown in the figure. The body of mass *m* hanging from a string of length *l* is executing oscillations of angular amplitude θ_0 , while the other body is at rest. The minimum coefficient of friction between the mass 4 m and the horizontal surface should be $(A)\left(\frac{2-\cos\theta_0}{3}\right) \qquad (B)\ 2\cos^2\left(\frac{\theta_0}{2}\right) \qquad (C)\left(\frac{1-\cos\theta_0}{2}\right) \qquad (D)\left(\frac{3-2\cos\theta_0}{4}\right)$ 5. The work done by tension in lowering down a block of mass = m kgthrough a distance 'd' is (A) mg $\frac{d}{4}$ (B) $3mg\frac{d}{4}$ g/4 (C) $-3mg \frac{d}{4}$ (D) mgd A force F = -k(yi + xj) acts on a particle moving in xy plane. Starting from the origin, the 6. particle is taken along the positive x axis to the point (a, 0) and than parallel to the y-axis to the point (a, a). the total work done by the force F on the particle is $(A) - 2ka^2$ (B) 2ka² (D) ka² $(C) - ka^2$ 7. Two blocks of masses m₁ and m₂ are connected with a spring of string constant k. They are kept on a smooth horizontal surface as shown in figure. Initially, the blocks are at rest and the spring is unstretched. If the blocks are pulled by forces F_1 and F_2 as shown in figure, then maximum extension in the spring will be (A) $\frac{F_1m_1 + F_2m_2}{K(m + m_2)}$ (B) $\frac{F_1m_2 + F_2m}{K(m + m_2)}$ (D) $\frac{F_1m_1 + F_2m_2}{2K(m_1 + m_2)}$ (C) $2\frac{F_1m_2 + F_2m_1}{K(m_1 + m_2)}$

(Matching List Sets)

This section contains **FOUR (04)** Matching List Sets. Each set has **ONE** Multiple Choice Question. Each set has **TWO** lists: List-I and List-II. List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5). FOUR options are given in each Multiple Choice Question based on List-I and List-II and **ONLY ONE** of these four options satisfies the condition asked in the Multiple Choice Question.

8. When a body is moving vertically up with constant velocity, then match the following:

List-I		List-II			
(P)	Work done by lifting force is	(1)	negative		
(Q)	Total work done by all the forces is	(2)	positive		
(R)	Work done by gravity	(3)	zero		
(S)	Work done by lifting force + work done by gravity force	(4)	Many positive va	alues	
		(5)	Many negative v	values	

The correct option is:

 $\begin{array}{l} (A) \ P \rightarrow 2 \ ; \ Q \rightarrow 3 \ ; \ R \rightarrow 5 \ ; \ S \rightarrow 1 \\ (C) \ P \rightarrow 4 \ ; \ Q \rightarrow 5 \ ; \ R \rightarrow 2 \ ; \ S \rightarrow 3 \end{array}$

(B) $P \rightarrow 2$; $Q \rightarrow 3$; $R \rightarrow 1$; $S \rightarrow 3$ (D) $P \rightarrow 3$; $Q \rightarrow 1$; $R \rightarrow 4$; $S \rightarrow 2$

9. A horizontal force F pulls a ring of mass m_1 such that θ remains constant with time. The ring is constrained to move along a smooth rigid horizontal wire. A bob of mass m_2 hangs from m_1 by an inextensible light string. Then match the entries of List-I with that of List-II.

Li <mark>st-l</mark>	List-II
(P) F	(1) (<mark>m₁ + m₂) g</mark>
(Q) Force acing on m ₂ is	(2) $m_2g \sec \theta$
(R) Tension in the string is	(3) $m_2 \frac{F}{m_1 + m_2}$
(S) Force acting on m_1 by the wire is	(4) $(m_1 + m_2)$ g tan θ
	(5) $m_1g \sec \theta$

The correct option is: (A) $P \rightarrow 4$; $Q \rightarrow 3$; $R \rightarrow 2$; $S \rightarrow 1$ (C) $P \rightarrow 3$; $Q \rightarrow 4$; $R \rightarrow 2$; $S \rightarrow 1$

(B) $P \rightarrow 4$; $Q \rightarrow 3$; $R \rightarrow 1$; $S \rightarrow 5$ (D) $P \rightarrow 2$; $Q \rightarrow 1$; $R \rightarrow 5$; $S \rightarrow 3$

A man pushes a block of 30 kg along a level floor at a constant speed with a force directed 10. at 45° below the horizontal. If the coefficient of friction is 0.20, then match the following.

List-I			Lis	st-ll
(P)	Work done by all forces exerted by the surface on the block in 20 m	(1)	zero	
(Q)	Work done by the force of gravity	(2)	–1500 J	
(R)	Work done by the man on the block in pushing it through 10 m	(3)	750	
(S)	Net force on the block	(4)	30 J	
		(5)	60 J	

The correct option is:

 $\begin{array}{l} (A) \ P \rightarrow 2 \ ; \ Q \rightarrow 1 \ ; \ R \rightarrow 4 \ ; \ S \rightarrow 3 \\ (C) \ P \rightarrow 2 \ ; \ Q \rightarrow 1 \ ; \ R \rightarrow 3 \ ; \ S \rightarrow 1 \end{array} \begin{array}{l} (B) \ P \rightarrow 4 \ ; \ Q \rightarrow 2 \ ; \ R \rightarrow 5 \ ; \ S \rightarrow 3 \\ (D) \ P \rightarrow 3 \ ; \ Q \rightarrow 5 \ ; \ R \rightarrow 2 \ ; \ S \rightarrow 1 \end{array}$

11. A chain of length ℓ and mass m lies on the surface of a smooth sphere of radius R > ℓ with one end tied to the top of the sphere.

	List-I		List-II
(P)	Gravitational potential energy w.r.t. centre of the sphere	(1)	$\frac{Rg}{\ell} \left[1 - \cos\left(\frac{\ell}{R}\right) \right]$
(Q)	The chain is released and slides down, its KE when it has slid by θ	(2)	$\frac{2Rg}{\ell} \left[sin\left(\frac{\ell}{R}\right) + sin\theta - sin\left(\theta + \frac{\ell}{R}\right) \right]$
(R)	The initial tangential acceleration	(3)	$\frac{MR^2 g}{\ell} sin\left(\frac{\ell}{R}\right)$
(S)	The radial acceleration a _r	(4)	$\frac{MR^{2}g}{\ell} \left[sin\left(\frac{\ell}{R}\right) + sin\theta - sin\left(\theta + \frac{\ell}{R}\right) \right]$
		(5)	$Rg\left[1-sin\left(\frac{\ell}{R}\right)\right]$
The correct option is: (A) $P \rightarrow 3$; $Q \rightarrow 4$; $R \rightarrow 2$; $S \rightarrow 5$ (B) $P \rightarrow 4$; $Q \rightarrow 1$; $R \rightarrow 3$; $S \rightarrow 2$ (C) $P \rightarrow 2$; $Q \rightarrow 5$; $R \rightarrow 3$; $S \rightarrow 2$ (D) $P \rightarrow 3$; $Q \rightarrow 4$; $R \rightarrow 1$; $S \rightarrow 2$			

т

т

 \cap

С

a=20 m/s²

(PART – B)

(Non – Negative Integer)

- 1. A particle of mass m is moving in a circular path of constant radius r(1m) such that it's centripetal acceleration a_c is varying with time t as $a_c = k^2 r t^2$, where k is a constant, then power delivered to the particle by the forces acting on it at t = 5 sec. (take mk² = 1 unit)
- 2. An object is displaced from point A(1m, 2m, 3m) to a point B(2m, 3m, 4m) under a constant force $\vec{F} = (2\hat{i} + 3\hat{j} + 4\hat{k})N$. Find the work done by this force in this process. (in joule)
- 3. A system consists of two identical slabs each of mass m linked by compressed weightless spring of stiffness k as shown in Figure. The slabs are also connected by a thread, which is burnt at a certain moment. If the value of $\Delta \ell$ the initial compression of spring, the lower

slab will bounce up after the thread is burned through is $\frac{x \text{ mg}}{k}$, then find the value of 'x'.

4. A bead is free to slide down on a smooth wire tightly stretched between point A and B on a vertical circle of radius 10 m. Find the time taken(in s) by the bead to reach the point B, if the bead slide from rest from the highest point A on the circle. (take $g = 10 \text{ m/s}^2$)

5. A circular disc with a groove along its diameter is placed horizontally. A block of mass 1kg is placed as shown. The co efficient of friction between the block and all surfaces of groove in contact is $\mu = \frac{2}{5}$. The disc

6. A block of mass 1 kg lies on a horizontal surface in a truck. The coefficient of static friction between the block and the surface is 0.6. If the acceleration of the truck is 5 m/s², then what frictional force acting on the block (in newton).

<u>SECTION - II : CHEMISTRY</u>

(PART – A)

(One or More Than One Options Correct Type) This section contains **3 multiple choice questions.** Each question has 4 choices (A), (B), (C) and (D), out of which ONE or MORE THAN ONE is correct.

(Single Correct Answer Type)

This section contains 4 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

- 4. The % ionic character in a covalent bond A – B is expressed as:
 - % Ionic character = $16|\chi_{A} \chi_{B}| + 3.5|\chi_{A} \chi_{B}|^{2}$
 - χ_{A} = Electronegativity of A, χ_{B} = Electronegativity of B

The electronegativity values of F = 4, O = 3.5, N = 3 and C = 2.1.

- Choose the correct statement from the following
- (A) The % ionic character of OF_2 is 8.875.
- (B) O₂ contains 80% of covalent character.
- (C) % ionic character of NO is greater than CO.
- (D) The C C sigma bond in CH₂ = CH₂ is more ionic than the C C sigma bond in $HC \equiv CH$

_	
5	

Compounds	Lattice energy in kJ mol ⁻¹
PF ₂	2906
QF ₂	2610
RF	703
SF	647
lons	Hydration energies in kJ mol ⁻¹
lons R⁺	Hydration energies in kJ mol ⁻¹ -413
lons R⁺ S⁺	Hydration energies in kJ mol ⁻¹ -413 -321
Ions R⁺ S⁺ P²⁺	Hydration energies in kJ mol ⁻¹ -413 -321 -1920
lons R* S* P2* Q2*	Hydration energies in kJ mol ⁻¹ -413 -321 -1920 -1650

P, Q, R and S are s-block metals. The lattice energies of their fluorides and the hydration energy of their ions are given above. Which salt can be easily crystallized from its saturated solution? (A) PF_2

(B) QF₂ (C) RF (D) SF

- 6. If the bond angles of $MF_2 = MCl_2 = MBr_2 = Ml_2$ are identical and equal to 180°, which is M? (B) Mg (C) Ca (D) Sr (A) Be
- In the given substances carbon undergoes sp³ hybridization. The covalent bond of which 7. contains exactly 25% s-orbital character/ (B) diamond (D) CHCl₃ $(A) CH_2F_2$ (C) CF_2CI_2

(Matching List Sets)

This section contains FOUR (04) Matching List Sets. Each set has ONE Multiple Choice Question. Each set has TWO lists: List-I and List-II. List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5). FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.

8. Match the compounds mentioned in list-I with their characteristics mentioned in list-II.

List – I		List – II
CO ₂	(1)	The solid form exi <mark>sts as </mark> three
		dimensional network s <mark>olid</mark>
SO ₂	(2)	Contains one unpaired electron on
		central atom
NO ₂	(3)	Has linear structure
SiO ₂	(4)	Central atom undergoes sp ²
		hybridization
	(5)	Contains only sigma bonds
\rightarrow 3; Q \rightarrow 2; R \rightarrow 4; S \rightarrow 5	(B) P	$^{2} \rightarrow 3; \mathbb{Q} \rightarrow 4; \mathbb{R} \rightarrow 2; \mathbb{S} \rightarrow 1$
\rightarrow 2; Q \rightarrow 4; R \rightarrow 3; S \rightarrow 5	(D) P	$P \rightarrow 3; Q \rightarrow 1; R \rightarrow 4; S \rightarrow 1$
	$List - I$ CO_2 SO_2 NO_2 SiO_2 $\rightarrow 3; Q \rightarrow 2; R \rightarrow 4; S \rightarrow 5$ $\rightarrow 2; Q \rightarrow 4; R \rightarrow 3; S \rightarrow 5$	List – I CO_2 (1) SO_2 (2) NO_2 (3) SiO_2 (4) (5) (5) \rightarrow 3; Q \rightarrow 2; R \rightarrow 4; S \rightarrow 5(B) F \rightarrow 2; Q \rightarrow 4; R \rightarrow 3; S \rightarrow 5(D) F

9. Match the compounds mentioned in list-I with their characteristics mentioned in list-II.

	List – I		List – II		
(P)	COH ₂	(1)	Has the smallest bond angle formed by		
			only single bonds out of the four		
			compounds		
(Q)	COF ₂	(2)	Highest dipole moment among the four		
			compounds		
(R)	COCl ₂	(3)	The central atom bonded with second		
			and third period elements		
(S)	COBr ₂	(4)	Contains the longest single bonds		
			among the four compounds		
		(5)	In the compound the single bonds		
			contain maximum s-character of central		
			atom		
(A) P	\rightarrow 1; Q \rightarrow 3; R \rightarrow 2; S \rightarrow 4	(B) P	\rightarrow 2; Q \rightarrow 1; R \rightarrow 3; S \rightarrow 4		
(C) P	\rightarrow 5; Q \rightarrow 2; R \rightarrow 3; S \rightarrow 4	(D) P	\rightarrow 2; Q \rightarrow 3; R \rightarrow 1; S \rightarrow 4		

10. Match the compounds mentioned in list-I with their characteristics mentioned in list-II.

	List – I (Compound)		List – II (Reaction with H ₂ O)		
(P)	Mg ₃ N ₂	(1)	A volatile acidic gas is produced		
(Q)	KO ₂	(2)	A basic gas is produced		
(R)	BeCl ₂	(3)	A neutral homonuclear gas is produced		
(S)	CaC ₂	(4)	A gas with molar mass 26 g mol ⁻¹ is produced		
		(5)	A gas with molar mass 28 g mol ⁻¹ is produced		
(A) P (C) P	\rightarrow 3; Q \rightarrow 2; R \rightarrow 1; S \rightarrow 5 \rightarrow 3: Q \rightarrow 2: R \rightarrow 5: S \rightarrow 1	(B) P (D) P	$P \rightarrow 2; Q \rightarrow 1; R \rightarrow 3; S \rightarrow 4$ $P \rightarrow 2; Q \rightarrow 3; R \rightarrow 1; S \rightarrow 4$		

11. Match the homonuclear diatomic molecules mentioned in list-I with their characteristics mentioned in list-II.

List – I		List – II			
(Compound)			(Reaction with H ₂ O)		
(P)	N ₂	(1)	Bo <mark>nd order =</mark> 0.5		
(Q)	O ₂	(2)	Lowest energy differences between		
			HOMO and LUMO		
(R)	F ₂	(3)	Loss of electrons from ground state		
. ,			increases stability		
(S)	Be	(4)	Loss of electrons from ground state		
			decreases stability		
		(5)	Paramagnetic in ground state		
	1:0 2: P 5: S 1				
(A) P	\rightarrow 4, \bigcirc \rightarrow 3, \land \rightarrow 5, \circ \rightarrow 1	(D) P	\rightarrow 4, \bigcirc \rightarrow 2, \land \rightarrow 3, \Im \rightarrow 1		
(C) P	\rightarrow 3; Q \rightarrow 4; R \rightarrow 2; S \rightarrow 1	(D) P	→ 4; Q → 3; R → 2; S → 1		

(PART – B)

(Non – Negative Integer)

- 1. The number of valence electrons of a homonuclear diatomic molecule(X_2) is equal to twice the number of valence electrons of atom X. If X is a second period element and the number of valence electron of X_2 is 10. What is the bond order of X_2 ?
- AB is a covalent compound. The A B bond length is 2.3 pm and the covalent radius of A is
 1.4 pm. The electronegative difference between A and B is 0.1. If the covalent radius of B in pm unit is x, what is the value of 10x?

- X⁺ is the simplest group-1 cation which forms stable complex with 12 crown 4 ether.
 If a = Atomic number of X
 b = Coordination number of X
 What is the value of (a + b)?
- 4. Both $BeCl_2$ and $Be(CH_3)_2$ forms polymers.
 - x = Maximum number of covalent bonds present around each Be atom in $BeCl_2$ polymer.
 - y = Coordination number of Be in BeCl₂ polymer + coordination number of Be in Be(CH₃)₂ polymer
 - z = Coordination number of carbon in Be(CH₃)₂ polymer

What is the value of (x + y + z)?

5. In interstitial hydrides of some 3d-transition series elements, the interaction takes place between H₂ molecules and metal atoms. The H₂ molecules can gain and donate electrons by the overlap of σ_{1s} and σ_{1s}^{*} molecular orbitals with the metal d-orbitals

If x = Number of electrons donated by one H₂ molecule. and y = Number of electrons are gained by one H₂ molecule What is the value of (x + y)?

6. The bond length of B – F bond in BF₃ is assumed to be 0.4 Å. If the longest distance between any two fluorine atoms in the molecule is expressed as $(y\sqrt{3})$ Å, what is the value of 10 y?

Space For <mark>Rough Work</mark>

<u>SECTION - III: MATHEMATICS</u>

(PART – A)

(One or More Than One Options Correct Type) This section contains 3 multiple choice questions. Each question has 4 choices (A), (B), (C) and (D), out of which ONE or MORE THAN ONE is correct.

1. If a, b, c are real numbers such that $a^2 + 4b^2 - c^2 + 4ab = 0$, then the distance between any two lines in the family of lines ax + by + c = 0 can be

(A) 2 (B)
$$\sqrt{13}$$

(C) $\sqrt{8}$ (D) 4

2. The area of the region bounded by the straight lines x = K, x - 3y = 0, x + y = 2 and by x - x = 1

axis is $\frac{11}{32}$, then the value of K is/are	
(A) $\frac{9}{4}$	(B) 9 2
(C) $\frac{1}{16}$	(D) $\frac{-9}{4}$

3. Let L₁ be a straight line passing through the origin and L₂ be the straight line x + y = 1. If the intercepts made by the circle $x^2 + y^2 - x + 3y = 0$ on L₁ and L₂ are equal, then which of the following equations can represent L₁

(A) $x + y = 0$	(B) $x - y = 0$
(C) $x + 7y = 0$	(D) $x - 7y = 0$

(Single Correct Answer Type)

This section contains **4 multiple choice questions**. Each question has four choices (A), (B), (C) and (D) out of which **ONLY ONE is correct**.

- A light ray emerging from the point source placed at P(2, 3) is reflected at a point Q on the y axis and then passes through the point R(5, 10). Coordinate of Q is:
 (A) (0, 3)
 - (C) (0, 5) (D) None of these
- 5. The equation of the circle passing through the point of intersection of the circles $x^2 + y^2 6x + 2y + 4 = 0$ and $x^2 + y^2 + 2x 6y 6 = 0$ and having its centre on y = 0 is (A) $2x^2 + 2y^2 - 8x + 3 = 0$ (B $3x^2 + 3y^2 - 6x + 2y = 0$ (C) $x^2 + y^2 - 8x - y - 12 = 0$ (D) none of these

6. If the lines 2x - 3y + 5 = 0, 9x - 5y + 14 = 0 and $3x - 7y + \lambda = 0$ are concurrent, then the value of λ is equal to

(A) 7	(B) 8
(C) 10	(D) 9

7. Let P be the point (-3, 0) and Q be a moving point (0, 3t). Let PQ be trisected at R so that R is nearer to Q. RN is drawn perpendicular to PQ meeting the x-axis at N. The locus of the midpoint of RN is (A) $(x + 3)^2 - 3y = 0$

 $(C) x^2 - y = 1$

(B) $(y + 3)^2 - 3x = 0$ (D) $y^2 - x = 1$

(Matching List Sets)

This section contains FOUR (04) Matching List Sets. Each set has ONE Multiple Choice Question. Each set has TWO lists: List-I and List-II. List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5). FOUR options are given in each Multiple Choice Question based on List-I and List-II and **ONLY ONE** of these four options satisfies the condition asked in the Multiple Choice Question.

8. Match each entry in List – I to the correct entries in List – II.

Each side of a square has lengths 4 units and its centre is at (3, 4). If one of the diagonal is parallel to the line if y = x, then match the following.

	List – I		List – II
(P)	Equation of one of the sides is	(1)	y - x = 1
(Q)	Equation of one of the diagonals is	(2)	y = 6
(R)	One of the vertices of the square is	(3)	x + y = 7
(S)	Midpoint of the one of the sides is	(4)	(1, 4)
		(5)	(1, 2)

(A) $P \rightarrow (3); Q \rightarrow (2); R \rightarrow (1); S \rightarrow (4)$

(B) $P \rightarrow (3)$; $Q \rightarrow (2)$; $R \rightarrow (5)$; $S \rightarrow (4)$

(C) $P \rightarrow (2); Q \rightarrow (1); R \rightarrow (5); S \rightarrow (4)$

(D) $P \rightarrow (2)$; $Q \rightarrow (1)$; $R \rightarrow (1)$; $S \rightarrow (3)$

9. Match each entry in List – I to the correct entries in List – II.

	List – I		List – II
(P)	The value of K for which $x^2+y^2=4$ and $x^2+y^2=2x+2ky=k$ cut orthogonally is	(1)	-35
(Q)	The value of k for which the lines $2x-ky+3=0$, $4x+y+5=0$ cut axes in concyclic points is	(2)	5
(R)	The value of k so that length of tangent from origin to the circle $x^2+y^2-2x-4y-k=0$ is 2 units is	(3)	-4
(S)	The value of k so that length of chord made by line $3x+4y+k=0$, to the circle $x^2+y^2-10x=0$ is of length 6 is	(4)	8
		(5)	0

- (A) $P \rightarrow (3); Q \rightarrow (4); R \rightarrow (3); S \rightarrow (1)$
- (B) $P \rightarrow$ (3); $Q \rightarrow$ (2) ; $R \rightarrow$ (5); $S \rightarrow$ (4)
- (C) $P \rightarrow (2); Q \rightarrow (1); R \rightarrow (4); S \rightarrow (5)$
- (D) $P \rightarrow$ (2); $Q \rightarrow$ (1); $R \rightarrow$ (1); $S \rightarrow$ (3)

10. Match each entry in List – I to the correct entries in List – II.

	List – I		List – II			
(P)	If a circle passes through the points of intersection of the	(1)	0			
	lines					
	$2x - y + 1 = 0$ and $x - \lambda y - 3 = 0$ with the coordinate axes,					
	then λ is					
(Q)	A circle circumscribes a triangle whose sides are given	(2)	1			
	by the joint equation $(x+y-4)(xy-2x-y+2)=0$. The					
	diameter of th <mark>e circle is equ</mark> al to					
(R)	The number of points on the circle $2x^2 + 2y^2 - 3x = 0$,	(3)	$\sqrt{2}$			
	which are at a distance 2 unit from the point (-2, 1) is					
	equal to					
(S)	If the angle between the tangents drawn from the origin	(4)	2			
	to the circle $(x - 7)^2 + (y + 1)^2 - 25$ is $\frac{2\pi}{3}$ then k is					
	$\frac{1}{k}$					
		(5)	4			
(A) $P \rightarrow (3); Q \rightarrow (4); R \rightarrow (3); S \rightarrow (4)$						
(B) F	<mark>P→ (3);</mark> Q → (<mark>2) ; R→(5); S→(</mark> 4)					

- (C) $P \rightarrow (2); Q \rightarrow (1); R \rightarrow (4); S \rightarrow (5)$ (D) $P \rightarrow (4); Q \rightarrow (3); R \rightarrow (1); S \rightarrow (5)$
 - Space For Rough Work

11. Match each entry in List – I to the correct entries in List – II. Let C_1 and C_2 be 2 circles whose equations are $x^2 + y^2 - 2x = 0$ and $x^2 + y^2 + 2x = 0$ respectively. $P(\lambda, \lambda)$ is a variable point

	List – I		List – II
(P)	P lies inside C ₁ but outside C ₂	(1)	$\lambda \in (-\infty, -1) \cup (0, \infty)$
(Q)	P lies inside C ₂ but outside C ₁	(2)	$\lambda \in (-\infty, -1) \cup (1, \infty)$
(R)	P lies outside C ₁ but inside C ₂	(3)	$\lambda \in (-1, 0)$
(S)	P does not lie inside C ₂	(4)	$\lambda \in (0, 1)$
		(5)	$\lambda \in (0, 1) \cup (1, 2)$

(A) $P \rightarrow (3); Q \rightarrow (2); R \rightarrow (3); S \rightarrow (4)$

(B) $P \rightarrow (3)$; $Q \rightarrow (2)$; $R \rightarrow (5)$; $S \rightarrow (4)$

(C) $P \rightarrow (4)$; $Q \rightarrow (3)$; $R \rightarrow (3)$; $S \rightarrow (1)$ (D) $P \rightarrow (2)$; $Q \rightarrow (1)$; $R \rightarrow (1)$; $S \rightarrow (3)$

(PART – B)

(Non - Negative Integer)

- 1. The number of common tangents to the circle $x^2 + y^2 4x 6x 12 = 0$ and $x^2 + y^2 + 6x + 18y + 26 = 0$, is
- 2. If the straight lines ax + by + p = 0 and $x\cos\alpha + y\sin\alpha = p$ are inclined at an angle $\frac{\pi}{4}$ and concurrent with the straight line $x\sin\alpha y\cos\alpha = 0$, then $a^2 + b^2$ is :
- 3. If a line $3x + 4y \lambda = 0$ lies between the circles $x^2 + y^2 2x 2y + 1 = 0$ and $x^2 + y^2 18x 2y + 78 = 0$ without touching or intersecting either circle, then the number of integral values ' λ ' can assume is
- 4. If a straight line through $P(\sqrt{3}, 2)$ and inclined at an angle $\frac{\pi}{6}$ with x axis meets the line $\sqrt{3x} 4y + 8 = 0$ at Q, then |PQ| is
- 5. Let C_1 and C_2 be the centre of the circle $x^2 + y^2 2x 2y 2 = 0$ and $x^2 + y^2 6x 6y + 14 = 0$ respectively. If P and Q are the points of intersection of these circles, then the are (in sq. units) of the quadrilateral PC₁QC₂ is
- 6. Two circles in the first quadrant of radii r_1 and r_2 touch the coordinate axes. Each of them cuts off an intercept of 2 units with the line x + y = 2. Then $r_1^2 + r_2^2 r_1r_2$ is equal to

F		JEE		ΝΤΙ	ER	NA		FEST	
BATCHES: Class – XII									
Code: 100982									
ANSWER KEY									
				ANSW	ER KE	<u>YS</u>			
					ysics RT – A				
	1.	ABC	2.	ABC	3.	CD	4.	D	
	5.	С	6.	С	7.	С	8.	В	
	9.	А	10.	С	11.	D			
				PA	RT – B				
	1.	5	2.	9	3.	3	4.	2	
	5.	7	6.	5					
				Che	mistry	,			
				PA	RT – A				
	1.	ACD	2.	ABCD	3.	AB	4.	А	
	5.	A	6.	A	7.	В	8.	В	
	9.	В	10.	D	11.	D			
				PA	RT – B	_			
	1.	3	2.	18	3.	1	4.	17	
	5.	4	6.	4					
				Math	ematio	S			
PART – A									
	1.	ABCD	2.	AD	3.	BC	4.	С	
	5.	А	6.	С	7.	D	8.	С	
	9.	A	10.	D	11.	С			
	1	2	0	PA	RT – B	0	A	C	
	1. 5	3	2.	2	ა.	Q	4.	Ø	
	э.	4	Ο.	1					