FIITJEE ALL INDIA TEST SERIES JEE (Advanced)-2025 <u>PART TEST – II</u> PAPER –1 <u>TEST DATE: 08-12-2024</u>

Time Allotted: 3 Hours

General Instructions:

The test consists of total 51 questions.

- Each subject (PCM) has 17 questions.
- This question paper contains **Three Parts**.
- **Part-I** is Physics, **Part-II** is Chemistry and **Part-III** is Mathematics.
- Each Part is further divided into Two Sections: Section-A & Section-B.

Section – A (01 – 04, 18 – 21, 35 – 38): This section contains TWELVE (12) questions. Each question has FOUR options. ONLY ONE of these four options is the correct answer.

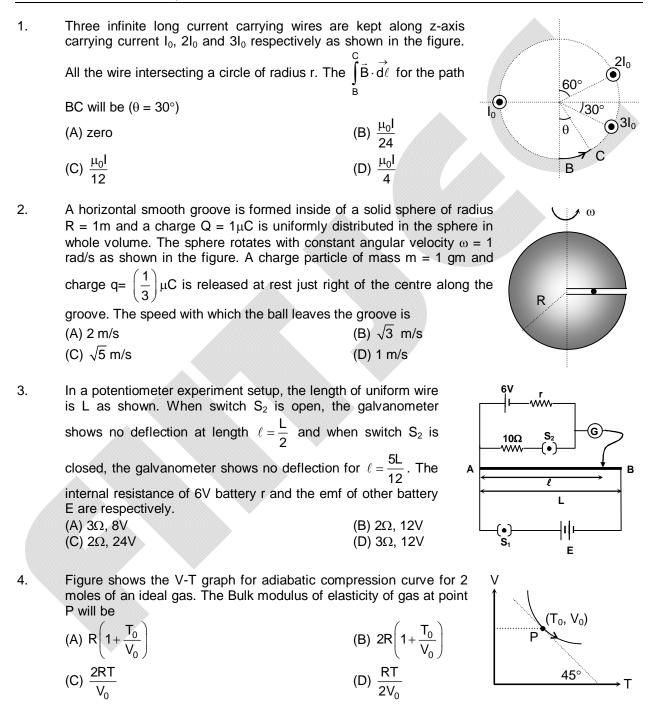
Section – A (05 –07, 22 – 24, 39 – 41): This section contains NINE (9) questions. Each question has FOUR options. ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s).

Section – A (08 – 11, 25 – 28, 42 – 45): This section contains **TWELVE (12)** Matching List Type Questions. Each question has **FOUR** statements in **List-I** entries (P), (Q), (R) and (S) and **FIVE** statements in **List-II** entries (1), (2), (3), (4) and (5). The codes for lists have choices (A), (B), (C), (D) out of which, **ONLY ONE** of these four options is correct answer.

Section – B (12 – 17, 29 – 34, 46 – 51): This section contains **EIGHTEEN (18)** numerical based questions. The answer to each question is a **NON-NEGATIVE INTEGER VALUE**.

MARKING SCHEME						
Section – A (Single Correct)	Section – A (Single Correct): Answer to each question will be evaluated according to the following marking scheme:					
Full Marks :	+3	If ONLY the correct option is chosen.				
Zero Marks :	0	If none of the options is chosen (i.e. the question is unanswered);				
Negative Marks :	-1	In all other cases.				
Section – A (One or More	than On	e Correct): Answer to each question will be evaluated according to the following				
marking scheme:						
Full Marks :	+4	If only (all) the correct option(s) is (are) chosen;				
Partial Marks :	+3	If all the four options are correct but ONLY three options are chosen;				
Partial marks : +2 If three or more options are correct but ONLY two options are chosen and both of which are correct;						
Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;						
Zero Marks :	0	If none of the options is chosen (i.e. the question is unanswered);				
Negative Marks :	-2	In all other cases.				
Section – B: Answer to each question will be evaluated according to the following marking scheme:						
Full Marks :	+4	If ONLY the correct numerical value is entered at the designated place;				
Zero Marks :	0	In all other cases.				

FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com

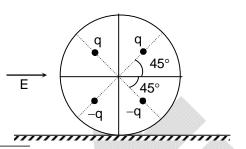

Maximum Marks: 180

PART – I

SECTION - A

(One Options Correct Type)

This section contains **FOUR (04)** questions. Each question has **FOUR** options (A), (B), (C) and (D). **ONLY ONE** of these four options is the correct answer.



SECTION – A (One or More than one correct type)

3

This section contains THREE (03) questions. Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is (are) correct answer(s).

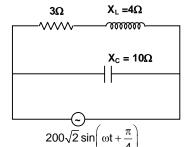
5. Four points charges of negligible masses +q, +q, -q and -q are embedded inside of a solid sphere of mass m and radius R symmetrically. The distance of each charge from the centre is $a\sqrt{2}$. Initially sphere is resting on a horizontal surface as shown in the figure. Now an electric field Ei is switched on, the sphere starts rolling without sliding. Find the correct option(s).

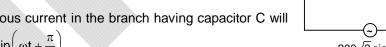
40qaE (A) Velocity of sphere when sphere rotates by $\frac{\pi}{2}$ is

(B) Frictional force during the motion is static and constant.

- (C) Frictional force acting on sphere, when sphere is rotated by will be zero.
- (D) The sphere will oscillate simple harmonically.
- 6. The total energy of a black body radiation source is collected for one minute and used to heat water. The temperature of the water increases from 20°C to 21°C. If the absolute temperature of the black body is doubled and the experiment is repeated, which of the following statement(s) would be most nearly correct?
 - (A) The temperature of the water would increases from 20°C to a final temperature of 28°C
 - (B) The temperature of the water would increases from 20°C to a final temperature of 36°C
 - (C) Rate of heat emission by the body increases 4 times
 - (D) Rate of heat emission by the body increases 16 times
- An AC source V = $200\sqrt{2} \sin\left(\omega t + \frac{\pi}{4}\right)$ is connected across a 7.

circuit where capacitive reactance is $X_{\rm C} = 10\Omega$, R = 4 Ω and inductive reactance $X_1 = 3\Omega$ as shown. Mark the correct answers.

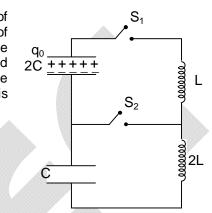

(A) Instantaneous current in the branch having capacitor C will


be
$$20\sqrt{2} \sin\left(\omega t + \frac{\pi}{4}\right)$$

(B) Instantaneous current in the branch having capacitor C will

be
$$20\sqrt{2}\sin\left(\omega t + \frac{3\pi}{4}\right)$$

- (C) Potential drop across X_L will be 160 V
- (D) Potential drop across R will be 120 V

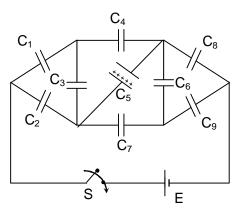


SECTION – A (Matching List Type)

4

This section contains **FOUR (04)** Matching List Type Questions. Each question has FOUR statements in **List-I** entries (P), (Q), (R) and (S) and FIVE statements in **List-II** entries (1), (2), (3), (4) and (5). The codes for lists have choices (A), (B), (C), (D) out of which **ONLY ONE** of these four options is correct answer.

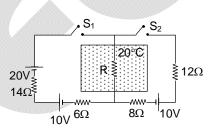
8. Initially switches S_1 and S_2 are disconnected and capacitor of capacitance 2C carries charge q_0 another capacitor of capacitance 'C' is uncharged and there is no current in both the coil of inductance L and 2L respectively. Switch S_1 is closed and the capacitor 2C starts discharge. The moment when the current in the coil reaches to maximum value the switch S_2 is instantly connected. Now match the List-I with List-II.


	List –I		List –II
(P)	Maximum current I_0 in the circuit before 'S ₂ '	(1)	q ₀ 1
	is connected		$\overline{3}\sqrt{LC}$
(Q)	Maximum current I1 through L after switch	(2)	$q_0 \sqrt{5}$
	'S ₂ ' is connected		3 VLC
(R)	Maximum current I ₂ both 2L after switch	(3)	q ₀
	'S ₂ ' is connected		$\sqrt{2LC}$
(S)	Maximum current I_3 through 'S' after switch	(4)	q ₀
	'S ₂ ' is closed		$\overline{3\sqrt{2LC}}$
		(5)	q ₀ 5
			$\overline{3}\sqrt{2LC}$

The correct option is:

9.

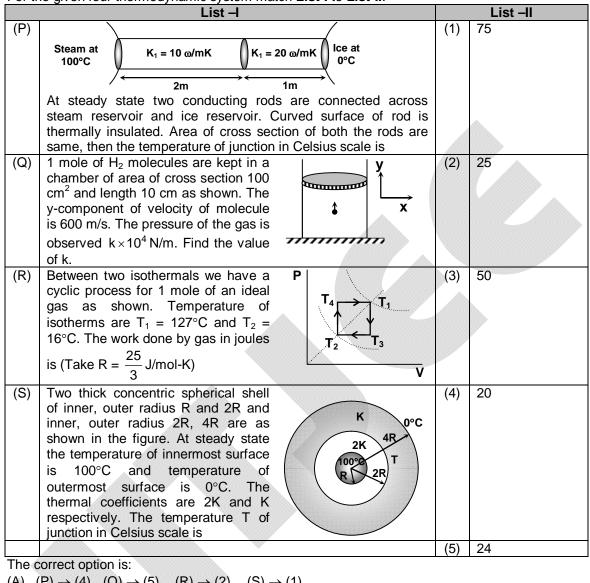
(A)	$(P) \rightarrow (4)$	$(Q) \rightarrow (5)$	$(R) \rightarrow (1)$	$(S) \rightarrow (3)$
(B)	$(P) \rightarrow (3)$	$(Q) \rightarrow (2)$	$(R) \rightarrow (5)$	$(S) \rightarrow (4)$
		$(Q) \rightarrow (2)$		$(S) \rightarrow (4)$
(D)	$(P) \rightarrow (2)$	$(Q) \rightarrow (5)$	$(R) \rightarrow (1)$	$(S) \rightarrow (3)$


In the following network capacitance of each capacitor is 11 μ F. Initially all capacitors where uncharged. Energy stored in C₅ capacitor is 22 μ J after switch S is connected. Now match the **List-I** with **List-II**.

	List –I		List –II
(P)	emf E of battery is K_1 volt. Find value of K_1	(1)	44
(Q)	Charge stored in the capacitor C_8 is $4K_2$ micro-coulomb. Find the value of K_2 .	(2)	10
(R)	Charge drawn from battery is $\frac{11K_3}{3}$ micro-coulomb.	(3)	11
	Find the value of K_3 .		
(S)	Energy drawn from battery is $\frac{55 \text{ K}_4}{6}$ micro-joules. Find the value of K ₄ .	(4)	22
		(5)	88

The correct option is:

- $\begin{array}{lll} (A) & (P) \rightarrow (3) & (Q) \rightarrow (2) & (R) \rightarrow (1) & (S) \rightarrow (4) \\ (B) & (P) \rightarrow (3) & (Q) \rightarrow (2) & (R) \rightarrow (5) & (S) \rightarrow (4) \\ (C) & (P) \rightarrow (2) & (Q) \rightarrow (3) & (R) \rightarrow (4) & (S) \rightarrow (5) \\ (D) & (P) \rightarrow (2) & (Q) \rightarrow (3) & (R) \rightarrow (4) & (S) \rightarrow (1) \end{array}$
- 10. In the circuit shown the resistance R is kept in a chamber whose temperature is 20°C which remains constant. The initial temperature and resistance of R is 50°C and 30Ω respectively. The resistance of resistor changes with temperature at the rate of 1 Ω/°C and the temperature of resistance decreases according to Newton's law of cooling and the rate of decrease of temperature of R is $\frac{(\ell n3)}{100}$ times


the temperature difference from surrounding. At t = 0 both the switch S_1 and S_2 are closed.

	List –I		List –II
(P)	The value of R (in Ω) for which power dissipation in it is maximum is	(1)	6
(Q)	Temperature of R when power dissipation in it is maximum is T ^o C then $\frac{T}{5}$ is	(2)	10
(R)	Time after which power dissipation in it is maximum is t sec. then $\frac{t}{20}$ is	(3)	1
(S)	Current (in Amp.) through 20 V battery when power dissipation in R is maximum is	(4)	4
		(5)	5

The correct option is:

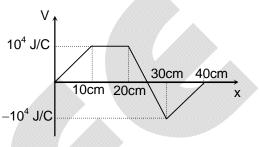
(A)	$(P) \rightarrow (3)$	$(Q) \rightarrow (1)$	$(R) \rightarrow (2)$	$(S) \rightarrow (4)$
(B)	$(P) \rightarrow (2)$	$(Q) \rightarrow (1)$	$(R) \rightarrow (5)$	$(S) \rightarrow (3)$
(C)	$(P) \rightarrow (2)$	$(Q) \rightarrow (2)$	$(R) \rightarrow (5)$	$(S) \rightarrow (3)$
(D)	$(P) \rightarrow (2)$	$(Q) \rightarrow (5)$	$(R) \rightarrow (1)$	$(S) \rightarrow (3)$

FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com 11. For the given four thermodynamic system match List-I to List-II.

SECTION – B

(Numerical Answer Type)

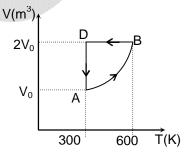
This section contains SIX (06) Numerical based questions. The answer to each question is a NON-NEGATIVE INTEGER VALUE.


12. The wavelength at which the spectral emissive power of a black body (at a temperature T) is maximum is given by λ_m . If the temperature of the body is increased by 1K, λ_m is decreases by

percent. The temperature T of the black body is Kelvin.

2q

- 13. A charge q is located somewhere inside of a hemispherical shell such that the depth of charge from the base of shell is 'd'. It is found that the flux associated with the curved surface of shell is $\frac{q}{3\varepsilon_0}$. If an another charge 2q is placed at a height d as shown the associated flux through curved surface was observed $\frac{Kq}{3\varepsilon_0}$. Find the value of K.
- 14. Electrostatic potential in a gravity free region varies with x as shown in the figure. A charge $q = -20\mu C$ and mass 2kg is released from rest at origin. The acceleration of charge particle at x= 25 cm is k m/s². Find the value of k.



15. A 1 kW electric kettle contains 2 liter water at 27°C. The kettle is operated for 10 minutes. If heat is lost to surrounding at a constant rate 160 J/s. Then the temperature attained by water in 10 minute will be (specific heat capacity of water = 4.2 kJ/kg°C)

7

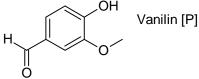
16. V-T graph for a cyclic process for 1 mole of monoatomic gas is shown in the figure. The slope of graph in process AB varies as

 $\frac{C}{P}$. Where k is a constant and P is the pressure of the gas. The work done by the gas in the process of the gas is mC. Find the value of m.

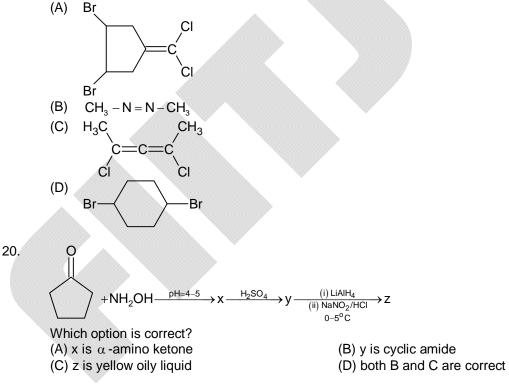
17. A particle of specific charge (charge/mass) α starts moving from origin under the action of an electric field $\mathbf{E} = \mathbf{E}_0 \hat{\mathbf{i}}$ and magnetic field $\vec{\mathbf{B}} = \mathbf{B}_0 \hat{\mathbf{k}}$ the velocity of charge particle at (x, y) is $4\hat{\mathbf{i}} + 3\hat{\mathbf{j}}$.

The x-coordinate of charge particle is given as $\frac{K}{4\alpha E_0}$. Find the value of K.

PART – II


8

SECTION – A


(One Options Correct Type)

This section contains **FOUR (04)** questions. Each question has **FOUR** options (A), (B), (C) and (D). **ONLY ONE** of these four options is the correct answer.

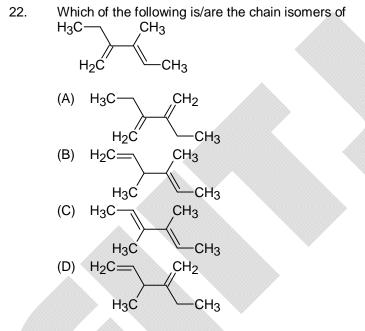
18. Choose the **INCORRECT** statement regarding Vanilin

- (A) [P] can be obtained as a major product when 3,4-dihydroxy benzaldehyde is treated with one equivalent of NaOH and one equivalent of MeBr.
- (B) [P] can be obtained as a one of the product when 2-methoxy phenol is treated with chloroform and aq. KOH.
- (C) Position isomer of [P] can be obtained when 3,4-dihydroxy benzaldehyde is treated with one equivalent of NaOH and one equivalent of MeBr.
- (D) [P] can be obtained when 3,4-dihydroxy benzaldehyde is treated with two equivalent of NaOH and one equivalent of MeBr followed by acidic work up.
- 19. Which of the following compound will **NOT** show geometrical isomerism?

$$\begin{array}{c} [\mathsf{P}] & \xrightarrow{1. \text{ NaOH}} & \mathsf{C}_4^{[\mathsf{H}_6\mathsf{O}_3]} & \xrightarrow{\Delta} & [\mathsf{R}] & \xrightarrow{\mathsf{NaOH/\Delta}} & \mathsf{C}_6^{[\mathsf{H}_1\mathsf{O}_3]} & \xrightarrow{\mathsf{NaOH/\Delta}} & \mathsf{NaOH/\Delta} & \mathsf{C}_6^{[\mathsf{H}_1\mathsf{O}_3]} & \xrightarrow{\mathsf{NaOH/\Delta}} & \mathsf{NaOH/\Delta}} & \mathsf{C}_6^{[\mathsf{H}_1\mathsf{O}_3]} & \xrightarrow{\mathsf{NaOH/\Delta}} & \mathsf{NaOH/\Delta}} & \mathsf{NaOH/\Delta} & \mathsf{NaOH/\Delta}} & \mathsf{NaOH/\Delta} & \mathsf{NaOH/\Delta} & \mathsf{NaOH/\Delta}} & \mathsf{NaOH/\Delta} & \mathsf{NaOH/\Delta} & \mathsf{NaOH/\Delta}} & \mathsf{NaOH/\Delta} & \mathsf{NaOH/$$

9

Unsaturated

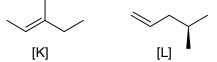

Lactone

- (A) [S] is an α , β unsaturated aldehyde.
- (B) Four stereoisomers are possible for [S].
- (C) Two structural isomers of [P] can satisfy the above reaction scheme. (D) O

[P] is |_____

SECTION – A

(One or More than one correct type) This section contains THREE (03) questions. Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is (are) correct answer(s).



23.

Which of the following statement(s) is/are correct about polymers?

- (A) Neoprene is a polymer of isoprene.
- (B) Glyptal is a condensation polymer of ethylene glycol and phthalic acid.
- (C) Terylene is a condensation polymer of ethylene glycol and terephthalic acid.
- (D) Nylon-6,6 is a condensation polymer of hexamethylenediamine and adipic acid.

- 10
- 24. Choose the CORRECT statement(s) about the following alkenes is/are

(A) Alkene [K] is more stable than alkene [L].

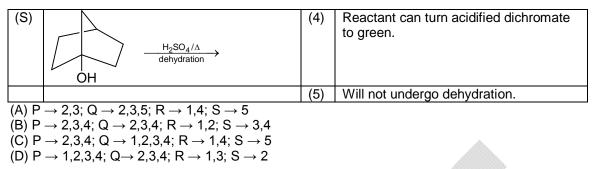
(B) Hydrogenation of achiral alkene [K] will give chiral product.

(C) Hydrogenation of achiral alkene [L] will give chiral product.

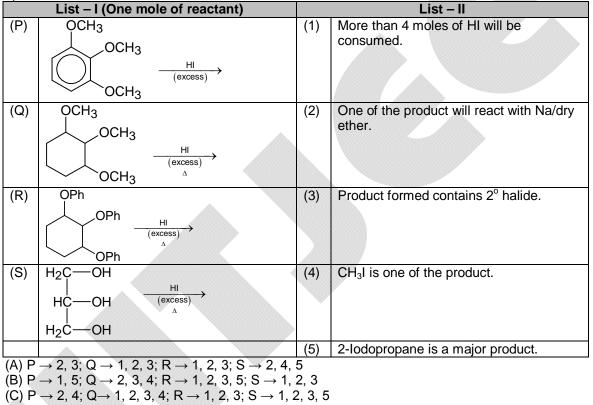
(D) The two alkenes [K] and [L] are structural isomers.

SECTION – A

(Matching List Type)


This section contains FOUR (04) Matching List Type Questions. Each question has FOUR statements in List-I entries (P), (Q), (R) and (S) and FIVE statements in List-II entries (1), (2), (3), (4) and (5). The codes for lists have choices (A), (B), (C), (D) out of which ONLY ONE of these four options is correct answer.

List – I		List – II	
		(Products can be distinguished by	
(P)	(1)	Fehling's test	
$\xrightarrow{O_3/Zn}_{H_2O} ?+?$			
(Q)	(2)	Tollen's test	
Ph $\xrightarrow{O_3/Zn}_{H_2O}$?+?			
$Ph' \rightarrow H_2 O \rightarrow H_2 O$			
(R)	(3)	lodoform test	
Ph $\xrightarrow{O_3/Zn}_{H_2O}$?+?			
$Ph' \rightarrow H_{20} \rightarrow f + f$			
(S)	(4)	Schiff's test	
$ \begin{array}{c} \hline \\ \hline $			
Ph Ph $^{n_2 \vee}$	×		
	(5)	Benedict's test	
(A) $P \rightarrow 1,2,3,4,5; Q \rightarrow 2,3,4; R \rightarrow 3; S \rightarrow 1,2,4$			
(B) $P \rightarrow 1,2,3,4; Q \rightarrow 1,2,3; R \rightarrow 3,4; S \rightarrow 1,2,4,4$	5		



Match each species in List - I with appropriate statement (s) of List - II and choose correct option

List – I	List – II	List – II			
(P) OH $\frac{H_2SO_4/\Delta}{dehydration}$	(1) At least one of the product shows optical isomerism.				
(Q) H ₃ C H_2SO_4/Δ H_2SO_4/Δ dehydration	(2) Major product contains even num α – hydrogens (Hydrogens which				
(R) H_2SO_4/Δ dehydration	(3) One of the product shows geomerism.	rical			

27. Match each species in List – I with appropriate statement(s) in List – II and choose correct options:

(D) $P \rightarrow 1, 2; Q \rightarrow 2, 4, 5; R \rightarrow 1, 2, 3; S \rightarrow 2, 3, 5$

28.

Match each species in List – I with List – II and choose correct option

	List – I	List – II					
(P)	A carbohydrate which yields only glucose on hydrolysis	(1)	Sucrose				
(Q)	A carbohydrate which yields glucose and fructose on hydrolysis	(2)	Lactose				
(R)	A carbohydrate which yields glucose and galactose on hydrolysis	(3)	Amylose				
(S)	A carbohydrate which can reduce Fehling's solution	(4)	Mannose				
		(5)	Cellulose				
(B) P (C) P	$\begin{array}{c c c c c c c c c c c c c c c c c c c $						

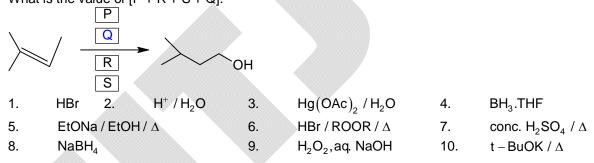
SECTION – B

(Numerical Answer Type)

This section contains SIX (06) Numerical based questions. The answer to each question is a NON-NEGATIVE INTEGER VALUE.

29. 'A' is an optically active hydrocarbon with minimum molecular weight ('A' does not have any isotopic atoms like D and C¹⁴).

If (a) Number of carbon atoms in A = x. (b) Degree of unsaturation = y. Calculate x + y


30. Consider the following reaction:

Br - CH₂ - COOEt + Zn
$$(i)$$
 (i) H_2O (i) NaOH (x)

If (x) is finally treated with excess of $NaBH_4$ followed by acid work-up, the number of diols formed (including stereoisomers) is (y). Then, calculate the value of 5y.

31. Choose the appropriate reagent sequence from the given reagent pool to complete the synthetic conversion. Make sure to use strictly four reagents, not more not less. Note: You can simply mention the numerical values corresponding to the reagent in the boxes P,

Q, R, S respectively and also consider major organic product in each step. What is the value of [P + R + S + Q].

- 32. [A] is a monomer of natural rubber, on reaction with HBr (1 eq)/CCl₄ at 298 K, it forms major product [B] (thermodynamically stable product).
 The number of allylic hydrogen of [B] is y, the value of (y)?
- 33.

$$\xrightarrow{H^{+}/\Delta} [P] \xrightarrow{\text{cold alkaline dilute KMnO_4(excess)}} [Q]$$

Calculate the sum of secondary and tertiary hydroxyl groups in [Q]

34. Number of chiral carbon atoms in α – D (+) glucose is x. Then calculate the value of 100x

Mathematics

PART – III

SECTION – A

(One Options Correct Type)

This section contains **FOUR (04)** questions. Each question has **FOUR** options (A), (B), (C) and (D). **ONLY ONE** of these four options is the correct answer.

- 35. The minimum value of $3 \sin x + 5 \sin^2 x + 4 \csc x + 6 \csc^2 x$, for $x \in \left(0, \frac{\pi}{2}\right]$ is (A) $2\left(\sqrt{12} + \sqrt{30}\right)$ (B) $4\left(360\right)^{1/4}$ (C) 18 (D) $2\left(\sqrt{18} + \sqrt{20}\right)$
- 36. Let $C_1 \& C_2$ be two circles which touch each other externally and the equation of pair of direct common tangents to them is given by $x^2 + 2\sqrt{15}xy + 3y^2 + 3x 5y + c = 0$. If radius of C_1 is 1 unit, and area of C_2 is greater than area of C_1 , then radius of C_2 is _____ (Given $C_1 \& C_2$ are between the region contained between the acute angle of the given lines)

(A)
$$\sqrt{2}$$
 (B) $\sqrt{3}$
(C) 2 (D) 3

37. In \triangle ABC, BC > AB > AC. The incircle of the triangle touches BC at M. The excircle of the triangle tangent to BC touches BC at N. If perimeter of \triangle ABC is 20 cm, MN = 2cm, BC = 8cm, and r is the inradius of the triangle ABC, then r × tanB = ?

(A) ¹⁵ / ₁₁	(B) $\frac{6}{5}$
(C) $\frac{15}{7}$	(D) 3

38. P & Q are two points on $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, such that $OP = \sqrt{2}, OQ = \sqrt{3}$ & $PQ = \sqrt{5}$, where 'O' is

the origin. If the eccentricity of the hyperbola is $\sqrt{6}$, then the area of triangle formed by the tangent at P & asymptotes of the hyperbola is

(A) $\frac{24}{5\sqrt{5}}$	(B) -	$\frac{12}{5\sqrt{2}}$
04	(D)	12 5

SECTION – A

(One or More than one correct type)

This section contains **THREE (03)** questions. Each question has **FOUR** options (A), (B), (C) and (D). **ONE OR MORE THAN ONE** of these four option(s) is (are) correct answer(s).

- 39. If $\cos \theta$ satisfies $16x^4 8x^3 12x^2 + 4x + 1 = 0$, where $0 < \theta < \pi$. Then which of the following statements is/are true?
 - (A) There are exactly four distinct values of $\boldsymbol{\theta}$ which satisfy the above
 - (B) The largest possible θ that satisfies the above is greater than $(1 + \sqrt{2})$ radians
 - (C) The smallest possible θ that satisfies the above is less than $\left(\frac{1}{2}\right)$ radians
 - (D) All such ' θ ' also satisfy $8\sin\left(\frac{\theta}{2}\right)\sin\left(\frac{5\theta}{2}\right)\cos\left(\theta\right) = 1$

40. ABCD is a parallelogram such that equations of diagonals BD and AC are 4x - 3y + 2 = 0 and 5x - 12y + 19 = 0 respectively. If area (ABCD) = 264 unit² and BD = 20 units, then the vertices of the parallelogram may be (A) (-5, -6) (B) (-7, 10) (C) (25, -12) (D) (-23, -8)

41. Let the reflection of the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ across the mirror y = 2x be given by $ax^2 + by^2 + 2hxy$

= c, where a & b are co-prime natural numbers. Then which of the following are true?

(A) a + b + c + h = 256(B) c = 5a(D) c = 15h

SECTION – A

(Matching List Type)

This section contains **FOUR (04)** Matching List Type Questions. Each question has FOUR statements in **List-I** entries (P), (Q), (R) and (S) and FIVE statements in **List-II** entries (1), (2), (3), (4) and (5). The codes for lists have choices (A), (B), (C), (D) out of which **ONLY ONE** of these four options is correct answer.

42. Let the lines $L_1 : 3x + 4y = 7$, $L_2 : 5x - 12y = -7$ and $L_3 : x - 8y = 21$ form a $\triangle ABC$, where A is the intersection of L_1 and L_2 , B is the intersection of L_2 and $L_3 \& C$ is the intersection of L_3 and L_1 . Let $P(\alpha, \beta)$ be a point on line $L_4 : x = 4y$, then in which interval will β always lie in if

List – I			List – II		
(P)	P is closer to point A than B or C	(1)	$\left(\frac{7}{31},\frac{3}{4}\right)$		
(Q)	P is closer to line AC than AB	(2)	$\left(\frac{3}{16},\frac{3}{8}\right)$		
(R)	$Ar(\Delta APB) + ar(\Delta BPC) > ar(\Delta APC)$	(3)	$\left(\frac{-135}{106},\frac{27}{26}\right)$		
(S)	P is strictly inside ∆ABC	(4)	$\left(-\frac{7}{8},\frac{7}{16}\right)$		
		(5)	$\left(\frac{-21}{16},\frac{35}{16}\right)$		

The correct option is:

- (A) (P) \rightarrow (1); (Q) \rightarrow (2); (R) \rightarrow (5); (S) \rightarrow (3) (B) (P) \rightarrow (5); (Q) \rightarrow (1); (R) \rightarrow (3); (S) \rightarrow (4) (C) (P) \rightarrow (3); (Q) \rightarrow (2); (R) \rightarrow (1); (S) \rightarrow (4) (D) (P) \rightarrow (3); (Q) \rightarrow (1); (R) \rightarrow (5); (S) \rightarrow (4)
- 43. From a point (40, 40), three distinct normals are drawn to $y^2 = 4x$. A circle passing through points of intersection of normals and parabola meets parabola at four points

List – I			List – II		
(P)	The abscissa of centre of the circle is	(1)	10		
(Q)	The ordinate of the centre of the circle is	(2)	16		
(R)	The closest integer to the radius of the circle is	(3)	21		
(S)	The abscissa of the fourth point common to the parabola and circle (apart from the intersection of normals & parabola) is	(4)	23		
		(5)	0		

The correct option is:

44. A particle is moving around the circle $x^2 + y^2 + 4x - 6y + 3 = 0$. The particle leaves the circle at (1, 2) tangential to it. It strikes the mirror y = mx + c, gets reflected as per laws of reflection, and then passes through the centre of the original circle. The perpendicular distance of y = mx + c from (1, 2) is 5 units. Then acute angle between the incident ray and reflected ray is 2α , then

List – I List		List – II	
(P)	Possible value of m is	(1)	2 + 5 cosec(α – tan ⁻¹ 3)
(Q)	Possible value of $c - 2$ is	(2)	$-\cot(\alpha - \tan^{-1} 3) + 5 \csc(\alpha - \tan^{-1} 3)$
(R)	Possible value of the ordinate of the point on the mirror where abscissa is 1 is	(3)	$\cot(\alpha - \tan^{-1} 3)$
(S)	Value of tan α is $\sqrt{\frac{\sqrt{a}-b}{c}}$, where a, b, c are co-prime natural numbers, then $\cot(\alpha + \tan^{-1}(a - b)) - \tan(a - b - c)$ is	(4)	$\cot(\alpha + \tan^{-1} 3)$
		(5)	$5 \operatorname{cosec}(\alpha + \tan^{-1} 3)$

The correct option is:

 $\begin{array}{l} (A) \ (P) \rightarrow (3); \ (Q) \rightarrow (2); \ (R) \rightarrow (5); \ (S) \rightarrow (4) \\ (B) \ (P) \rightarrow (4); \ (Q) \rightarrow (5); \ (R) \rightarrow (1); \ (S) \rightarrow (3) \\ (C) \ (P) \rightarrow (3); \ (Q) \rightarrow (2); \ (R) \rightarrow (1); \ (S) \rightarrow (4) \\ (D) \ (P) \rightarrow (4); \ (Q) \rightarrow (2); \ (R) \rightarrow (5); \ (S) \rightarrow (3) \end{array}$

45. Let PQRST be a regular hexagon of maximum possible area which is inscribed in an ellipse E such that P, Q, S, T lie on the boundary of the ellipse, and R and U coincide with the foci of the ellipse. Let the length of semi-major axis of E be a. Then

List – I			List –II	
(P)	Length of longest diagonal of PQRST is	(1)	(√3 – 1)a	
(Q)	Length of latus rectum of E is	(2)	(2√3 – 2)a	
(R)	Ratio of area of hexagon to the area of E is given as $\frac{3^{\frac{5}{4}}}{2^{\frac{1}{2}}\pi} \cdot k$. Then (a × k) equals	(3)	(2-√3)a	
(S)	Let θ be the acute angle between PQ and the tangent to E at Q, then (a \times tan $\theta)$ is	(4)	(2√3 – 3)a	
		(5)	$(4\sqrt{3}-6)a$	

The correct option is:

 $\begin{array}{l} (A) \ (P) \rightarrow (2); \ (Q) \rightarrow (4); \ (R) \rightarrow (5); \ (S) \rightarrow (1) \\ (B) \ (P) \rightarrow (2); \ (Q) \rightarrow (5); \ (R) \rightarrow (1); \ (S) \rightarrow (3) \\ (C) \ (P) \rightarrow (1); \ (Q) \rightarrow (2); \ (R) \rightarrow (5); \ (S) \rightarrow (3) \\ (D) \ (P) \rightarrow (3); \ (Q) \rightarrow (4); \ (R) \rightarrow (2); \ (S) \rightarrow (1) \end{array}$

SECTION - B

(Numerical Answer Type)

This section contains SIX (06) Numerical based questions. The answer to each question is a NON-NEGATIVE INTEGER VALUE.

- 46. Let 3x + 4y = 7 be tangent to an ellipse with foci P(1, -1) and Q(2, -2) at point A. The value of $\frac{5}{\sqrt{2}}(PA + QA)$ is equal to
- 47. Number of integral values of x in the interval $[0, 5\pi]$ which satisfy $\cos^9 x \sin^9 x < 5(\sin^5 x \cos^5 x)$ is _____
- 48. Let N be the number of lattice points strictly inside the auxiliary circle of $\frac{x^2}{36} \frac{9y^2}{400} = 1$ such that two distinct tangents can be made on the hyperbola from that point and the points of contact of the tangents with the hyperbola are in the third and fourth quadrants. Then the value of N is _____. ((x, y) is called a lattice point if $x \in Z \& y \in Z$).
- 49. In \triangle ABC, let 'l' be the incentre and 'O' be the circumcenter (lying inside the triangle). If B, I, O, C are concyclic points, AB = 4 and BC = 5, then area of \triangle ABC is given by $(\sqrt{12} + \sqrt{n})$ unit², where 'n' is a natural number. Value of n is _____
- 50. Let ABCD be convex quadrilateral. P_1 is a parabola having focus at A and is tangent to lines BC & CD at E & F respectively. P_2 is another parabola having focus at C and is tangent to lines AB & AD at G & H respectively. Also, BD is tangent to P_1 at I & tangent to P_2 at J, such that BI < BJ < BD. If BI = 7, IJ = 4, then BD = ?
- 51. If $\tan x + \tan^2 x + \tan^3 x = 1$, then the value of $10 \cos^2 x(2 \sin^2 (2x))$ equals